Molecular Markers in Breast Cancer:

Research and diagnostic testing with special reference to **HER2**, MDR1 and Ki67

Disclaimer

• my primary research focus is...not HER2

Christgen (2015) Breast Cancer Res 17:16

MHH

Disclaimer

- my primary research focus is...not HER2
- perspective from routine diagnostics and reference laboratory service for clinical trials

Therapeutic decision-making depends on prognostic and predictive biomarkers

Campbel *et al.* (1981) Lancet 2:1317 Perou *et al.* (1999) PNAS 96:9212

Therapeutic decision-making depends on prognostic and predictive biomarkers

Therapeutic decision-making depends on prognostic and predictive biomarkers

Mueller et al. (2015) Sci Translat Med: submitted

MHH

Baselga *et al.* (2009) Nat Rev Cancer 9:463 Verma *et al.* (2013) Oncologist 18:1153

МН

Therapeutic decision-making depends on prognostic and predictive biomarkers

Therapeutic decision-making depends on prognostic and predictive biomarkers

Baselga *et al.* (2009) Nat Rev Cancer 9:463 Verma *et al.* (2013) Oncologist 18:1153

Therapeutic decision-making depends on prognostic and predictive biomarkers

Kallioniemi *et al.* (1992) Proc Natl Acad Sci 89:5321 discussion section line 18-ff

Therapeutic decision-making depends on prognostic and predictive biomarkers

МН

Therapeutic decision-making depends on prognostic and predictive biomarkers

Evolution of HER2-targeted therapy and HER2 testing

Cobleigh et al. (1999) J Clin Oncol 17:2639 Slamon et al. (2001) N Engl J Med 344:783 Ramond et al. (2005) N Engl J Med 353:1659 Piccart-Gebhart et al. (2005) N Engl J Med 354:809 Joensuu et al. (2006) N Engl J Med 354:809

Evolution of HER2-targeted therapy and HER2 testing

Evolution of HER2-targeted therapy and HER2 testing

Paik *et al.* (2002) J Natl Cancer Inst 94:852 Roche *et al.* (2002) J Natl Cancer Inst 94:855 Press *et al.* (2005) Clin Cancer Res 11:6598

14.320

Ross et al. (2009) Oncologist 14:320

D Dr.med. PhD M.Christgen nstitute of Pathology Jannover Medical School

Applied Immunohistochemistry
Aalborg, 9th-12th June 2015

MHH Medizinische Hochschule

Evolution of HER2-targeted therapy and HER2 testing

ASCO (1998) J Clin Oncol 16:793
Bast et al. (2001) J Clin Oncol 19:1865
Zarbo et al. (2003) Arch Pathol Lab Med 127:549
Wolff et al. (2007) J Clin Oncol 25:118
Wolff et al. (2013) J Clin Oncol 31:3997
Wolff et al. (2015) J Clin Oncol 33:1302

D Dr.med. PhD M.Christgen
stitute of Pathology
on Applied Immunohistochen
annover Medical School
Aalborg, 9th-12th June 20:

M_HH Medizinische Hochschule Hannover

Background of the 2007 ASCO/CAP HER2 guideline

Wolff et al. (2007) J Clin Oncol 25:118 Appendix G, line 13: goals of the panel

PD Dr.med. PhD M.Christgen Institute of Pathology Hannover Medical School 2nd NordiQC Conference n Applied Immunohistochemistry Aalborg, 9th-12th June 2015 M4H Medizinische Hochschule Hannover

Background of the 2007 ASCO/CAP HER2 guideline

Wolff et al. (2007) J Clin Oncol 25:118 Appendix G, line 13: goals of the panel

Institute of Pathology Hannover Medical School on Applied Immunohistochemistry Aalborg, 9th-12th June 2015 MHH Medizinische Hochschule

HER2 test consistency: trends in round robin tests and clinical trials

ALTTO trial		central		
		neg./equi.	pos.	Σ
local	equi.	13	14	27
Ö	pos.	58	971	1029
		-positive ra		

Wolff et al. (2013) J Clin Oncol 31:3997 McCullough et al. (2014) Breast Cancer Res Treat 143:485

nstitute of Pathology Hannover Medical School 2nd NordiQC Conference Applied Immunohistochemistry Aalborg, 9th-12th June 2015 MHH Medizinische Hochschule

HER2 test consistency: trends in round robin tests and clinical trials

Liessem et al. (2014) Pathologe 35:61 Christgen et al. (2012) J Clin Oncol 30:3313

MHH Medizinische Hochschule

HER2 test consistency: trends in population-based registries

Chroritz et al. (2011) Virchows Arch 459:2

PD Dr.med. PhD M.Christge Institute of Pathology Hannover Medical School 2nd NordiQC Conference on Applied Immunohistochemistr Aalborg, 9th-12th June 2015 M4H
Medizinische Hochschule
Hannover

HER2 test consistency: trends in population-based registries

Chroritz et al. (2011) Virchows Arch 459:283

on Applied Immunohistochemistr Aalborg, 9th-12th June 2015 MHH Medizinische Hochschule

HER2 test consistency: trends in population-based registries

PD Dr.med. PhD M.Christgen Institute of Pathology Hannover Medical School 2nd NordiQC Conference
n Applied Immunohistochemistry
Aalborg, 9th-12th June 2015

Chroritz et al. (2011) Virchows Arch 459:283

MH Medizinische Hochschule

HER2 test consistency: trends in population-based registries

Bilous et al. (2012) Breast Cancer Res Treat 134:617 Chroritz et al. (2011) Virchows Arch 459:283

diQC Conference

M4H Medizinische Hochschule

Background of the 2013 ASCO/CAP HER2 guideline

Background of the 2013 ASCO/CAP HER2 guideline

2013 ASCO/CAP guideline: changes in IHC scoring

MHH

Wolff et al. (2013) J Clin Oncol 31:3997

MH

2013 ASCO/CAP guideline: changes in IHC scoring

2013 ASCO/CAP guideline: changes in IHC scoring

МН

2013 ASCO/CAP guideline: changes in $\underline{\text{IHC}}$ scoring

Moeder et al. (2007) J Clin Oncol 25:5418

Institute of Pathology Hannover Medical School 2nd NordiQC Conference on Applied Immunohistochemistry MHH Medizinische Hochschule Hannover

2013 ASCO/CAP guideline: changes in ISH scoring

PD Dr.med. PhD M.Christgen Institute of Pathology Hannover Medical School n Applied Immunohistochemistry
Aalborg, 9th-12th June 2015

MHH Medizinische Hochschule

2013 ASCO/CAP guideline: changes in <u>ISH</u> scoring impact on clinical trials

ADAPT HR+/HER2+ central (2012)							
NCT01	1745965	IHC 0/1+	IHC 2+ FISH - (r)	IHC 2+ FISH eq (r)	IHC 2+ FISH + (r)	IHC 3+	Σ
local	positive	26 (5,8%)	22 (4,9%)	13 (2,9%)	34 (7,6%)	353 (78,8%)	448

<u>local HER2 neagtive</u> + <u>central HER2 equivocal</u>
the most common constellation
demanding clinicians to re-consider the therapy strategy in ADAPT HR+/HER2-

HER2 equivocal: a debated clinical category and its counterpart in cell biology

Brinkley et al. (1980) Cancer Res 40:3118 Rhodes et al. (2002) Am J Clin Pathol 117:81 Lewis et al. (1996) Cancer Res 56:1996 Doane et al. (2006) Oncogene 25:3994 Lehmann et al. (2011) JNCI 121:2750 Robinson et al. (2011) EMBO J 30:3019

PD Dr.med. PhD M.Christg Institute of Pathology Hannover Medical School 2nd NordiQC Conference on Applied Immunohistochemist Aalborg, 9th-12th June 2015

AGO statement on 2013 ASCO/CAP HER2 guideline

AGO statement on 2013 ASCO/CAP HER2 guideline

ASCO/(CAP)

	issues
↑ test cor	sistency , ↓ HER2+ rates
Definition	of "equivocal" (sp vs dp ISH)
	// (-p p /
Specific co	onstellations
- IHC inte	nse incomplete
- CEP17 m	ionosomy
- fixation	ime "friday night specimen"
- CNB vs r	esections

provisions	AGO 2014
IHC weak incomplete: 1+ → 2+	no
IHC cutoff 30% → 10%	yes
Ratio 1.8-2.2 suspended	yes
- IHC intense incomplete → 2+	yes
- CEP17 monosomy → ISH+	yes
- fixation time 6-48 h → 6-72h	yes
-"histological concordance" retest G3 TN	no

Wolff et al. (2013) J Clin Oncol 31:3997

ASCO/(CAP)

issues
↑ test consistency , ↓ HER2+ rates
Definition of "equivocal" (sp vs dp ISH)
Specific constellations
- IHC intense incomplete
- CEP17 monosomy
- fixation time "friday night specimen"
- CNB vs resections

IHC cutoff 30% \rightarrow 10% Ratio 1.8-2.2 suspended · IHC intense incomplete → 2+ - CEP17 monosomy → ISH+ - fixation time 6-48 h → 6-72h

Wolff et al. (2015) J Clin Oncol 33:1302

МН

HER2 / ErbB2

P-gp / MDR1 /ABCB1

Evolution of MDR1-targeted therapy and MDR1 testing

clinical trials

verapamil in mBC Belpomme et al.2000 tariquidar in mBC Pusztai et al. 2005 Abraham et al. 2009

valspodar in mBC biricodar in mBC Toppmeyer et al.2002 valspodar in mOvCa Lhomme et al.2008

high rate of

quinidine in mBC Wishart et al. 1994

Wishart et al. (1994) J Clin Oncol 12:1771
Belpomme et al. (2000) Ann Oncol 11:1471
Toppmeyer et al. (2002) Clin Cancer Res 8:670
Pusztai et al. (2005) Cancer 104:682
Carlson et al. (2006) Cancer Invest 24:671
Lhomme et al. (2008) J Clin Oncol 26:2674
Abraham et al. (2009) Clin Cancer Res 15:3574

Evolution of MDR1-targeted therapy and MDR1 testing

Our experience: MDR1-mediated drug resistance

Krech et al. (2012) Cancer Lett 315:153 MHH

Therapeutic decision-making depends on prognostic and predictive biomarkers

Therapeutic decision-making depends on prognostic and predictive biomarkers

Therapeutic decision-making depends on prognostic and predictive biomarkers

Cheang et al. (2009) J Nat Cancer Inst 101:736 Allison et al. (2012) Breast Cancer Res Treat 131:413 Sahebjam et al. (2011) Br J Cancer 105:1342

The value of Ki67 is controversial

cons
insufficient standardization antibodies (SP6, Mib1, 30-9) interpretation (intensity, nucleoli) scoring (eyeballing, counting)
ASCO/CAP "Molecular Markers": Ki67 <u>not</u> recommended

Harris et al. (2007) J Clin Oncol 33:5287 Varga et al. (2012) PlosOne 7:e137379 Polley et al. (2013) J Nat Cancer Inst 105:1897 Harbeck et al. (2013) Breast Care 8:102

МН

The value of Ki67 is controversial

Ki67 Working Group : Reproducibility study n= 100 breast cancers, TMAs, 1 mm cores Mib1 staining, central n= 6 expert laboratories moderate reproducibility (ICC ~0.71)

The value of Ki67 is controversial

→ possibly even too optimistic?

insufficient standardization antibodies (SP6, Mib1, 30-9) interpretation (intensity, nucleoli) scoring (eyeballing, counting) ASCO/CAP "Molecular Markers": Ki67 <u>not</u> recommended

MH

The value of Ki67 is controversial

Ki67 Working Group insufficient standardization Scoring-Training, round robin tests, antibodies (SP6, Mib1, 30-9) interpretation (intensity, nucleoli) scoring (eyeballing, counting) Computer-assisted Image Analysis (CAIA) ASCO/CAP "Molecular Markers": Ki67 not recommended

Computer-assissted image analysis (CAIA) promises improved Ki67 quantification

FDA 510(k)-clearance in 2013

Polley et al. (2015) Mod Pathol 28:778 en et al. (2015) Clin Cancer Res: in press

MH

МН

Computer-assissted image analysis for Ki67 in prospective clinical trials (e.g. ADAPT)

Harbeck et al. (2014) Cancer Treatment Rev 40:434 Hofmann et al. (2013) Trials 14:261

МН

Ki67 quantification: automated versus semi-automated

Ki67 quantification: automated versus semi-automated

Dowsett et al. (2011) J Natl Cancer Inst 103:1656

M_HH

Ki67 quantification: automated versus semi-automated

Dowsett et al. (2011) J Natl Cancer Inst 103:1656

M_HH

Ki67 quantification: Does the ROI size impact on Virtuoso readouts?

Case expamle: Virtuoso with multiple ROI sizes

Case expamle: Virtuoso with multiple ROI sizes

МН

Christgen et al. (2015) Hum Pathol: in press

Case expamle: Virtuoso with multiple ROI sizes

Christgen et al. (2015) Hum Pathol: in press

МН

Rigorous morphological QC: Virtuoso rejected in 46% of cases

Modelling the gradient of the median Ki67 index

МН

Christgen et al. (2015) Hum Pathol: in press МН

The median Ki67 index varies between 55% and 15% depending on the ROI size

Ki67-low *versus* Ki67-high: 50% of cases are re-classifiably by re-shaping the ROI

Christgen et al. (2015) Hum Pathol: in press

med. PhD M.Christgen

to of Pathology

on Applied Im

over Medical School

Aalborg, 9t

Ind NordIQC Conference
Applied Immunohistochemistry
Applier 9th-12th June 2015

MHH Medizinische Hochschule

Christgen et al. (2015) Hum Pathol: in press

2nd NordiQC Conference on Applied Immunohistochemistry Aalborg, 9th-12th June 2015 MHH Medizinische Hochschule

Semi-automated CAIA for Ki67 may require an adjustment for the ROI size

Christgen et al. (2015) Hum Pathol: in pre

2nd NordiQC Conference on Applied Immunohistochemistry Aalborg, 9th-12th June 2015 MHH Medizinische Hochschule

Summary

PD Dr.med. PhD M.Christgen Institute of Pathology Hannover Medical School 2nd NordiQC Conference on Applied Immunohistochemistr Aalborg, 9th-12th June 2015 MHH Medizinische Hochschule

